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Abstract-The main objective of the paper is the investigation of shear band localization criteria
for finite elastic-plastic deformations of a single crystal subjected to an adiabatic process. The next
objective is to focus attention on the temperature dependent plastic behaviour of the single crystal
considered. A constitutive model is developed within the thermodynamic framework of the rate
type covariance constitutive structure, i.e. it is invariant with respect to diffeomorphism. To achieve
this aim a multiplicative decomposition ofthe deformation gradient is adopted and the Lie derivative
is used to define all objective rates for introduced vectors and tensors. Thermomechanical couplings
are investigated and a method is developed which allows us to use the standard bifurcation procedure
in the examination of the adiabatic shear band localization. The general evolution equation for the
Kirchhoff stress tensor is obtained. The fundamental matrix in this evolution equation describes
thermomechanical couplings as well as local lattice deformation and rotation. For the particular
elastic properties of the single crystal and for some simplified case of the coupling effects the criteria
for adiabatic shear band localization are obtained in their exact analytical form. The influence of
two important thermal effects, namely thermal expansion and thermal plastic softening on the
criteria of localization is investigated. The similar influence of spatial covariance effects (which arise
from the difference between the Lie derivative and the material rate of the Kirchhoff stress tensor)
is also examined.

It has been shown that by incorporating the thermomechanical effects and the spatial covariance
effects into a constitutive law of the elastic-plastic single crystal, the plastic hardening modulus hem
at the inception of localization is in fact small but positive.

It has also been proved that this thermomechanical theory of single crystals can describe the
misalignment of the shear bands from the active slip systems in the crystal's matrix. The computed
critical value of the strain-hardening rate hedt as well as the difference between the direction of the
macroscopic shear band and the primary slip systems of the single crystal appeared to be in accord
with recent experimental observations [cf Chang and Asaro (1981, Acta Metall. 29, 241-257) for
Al--cu single crystals and Spitzig (1981, Acta Metall. 29,1359-1377) for Fe-Ti-Mn single crystals].

I. INTRODUCTION

During the past 20 years there has been significant progress in constitutive modelling of the
metallic single crystal behaviour as well as in the description of the localized deformations
of ductile single crystals.

In a group of papers concerned with the description ofconstitutive properties of single
crystals we have to mention the following: Hill (1966, 1967, 1972); Hutchinson (1970,
1976); Rice (1971); Hill and Rice (1972, 1973); Asaro and Rice (1977); Havner and
Shalaby (1977) ; Peirce et al. (1982, 1983); Asaro and Needleman (1985); Iwakuma and
Nemat-Nasser (1984); Nemat-Nasser and Obata (1986); Perzyma (1988); and review
papers by Asaro (1983a, b).

An analysis of strain localization in ductile crystals has been presented by Rice (1977),
Asaro and Rice (1977), Peirce et al. (1982, 1983), in review papers by Asaro (1983a, b) and
very recently by Su and Lu (1991).

Experimental observations of the shear band localization in single crystals have been
recently performed by Chang and Asaro (1980, 1981) and Spitzig (1981).

The paper by Asaro and Rice (1977) has clearly shown that the classical theory of
crystals based on the Schmid constitutive law does not seem appropriate to explain the
shear band localization phenomenon in ductile metallic single crystals.

Asaro and Rice (1977) have suggested that we "examine the possibility that localized
deformation may, in some circumstances, arise for reasons other than work-softening or
related degradations in strength." They have focused attention on the localization criteria
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for "an assumed class of materials that essentially obey Schmid's rule but display modest
departure from it." Starting with the theoretical study oflocalization viewed as a bifurcation
from a homogeneous deformation mode to one which is concentrated in a narrow shear
band they have proved that the plastic hardening rate heri, at the inception of localization
may be positive when there are deviations from the Schmid rule.

The second important fact of the shear band localization in ductile metallic single
crystals has been recently observed by Chang and Asaro (1981) for Al-Cu single crystals
and Spitzig (1981) for nitrogenated Fe-Ti-Mn single crystals and is concerned with the
misalignment of the shear bands by several degrees from the active slip systems in the
crystal's matrix.

To describe both experimentally observed facts, namely that the shear band localization
may occur for a small positive value of the plastic hardening rate herll and that the formed
shear bands are misaligned with the active slip systems in the crystal's matrix by several
degrees we intend to consider the synergetic effects generated by simultaneous incorporation
in the constitutive model of single crystals the spatial covariance effects and the thermo­
mechanical couplings.

The importance of adiabatic heating effects in the explanation of localized plastic
deformation in single crystals was first noticed by Chin et al. (1964) while the lattice
stretching and rotation have been broadly investigated by Asaro and Rice (1977).

The main objective of the present paper is the investigation of shear band localization
criteria for finite elastic-plastic deformations of a single crystal subjected to an adiabatic
process. The next objective is to focus attention on the temperature dependent plastic
behaviour of a single crystal considered.

In Section 2 the experimental observations of shear band localization in single crystals
are discussed. Heuristic considerations of the different plastic localized modes and physical
motivations for the present research are presented.

Section 3 is devoted to the development of a constitutive model within the thermo­
dynamic framework of the rate type covariance constitutive structure. A notion of covari­
ance is understood in the sense that the constitutive structure of single crystals is invariant
with respect to diffeomorphisms. To achieve this aim a multiplicative decomposition of the
deformation gradient is adopted and the Lie derivative is used to define all objective rates
for introduced vectors and tensors. Thermomechanical couplings are investigated. Particular
attention is focused on the proper description of internal heating generated by the rate of
internal dissipation during the adiabatic process considered.

In Section 4 the macroscopic shear band formation during an adiabatic process for
single slip is studied. The general evolution equation for the Kirchhoff stress tensor is
obtained. The fundamental matrix in this evolution equation describes thermomechanical
couplings as well as local lattice deformation and rotation. For the particular elastic
properties of the single crystal and for some simplified case of the coupling effects the criteria
for adiabatic shear band localization are obtained in exact analytical form. The influence
of two important thermal effects, namely thermal expansion and thermal plastic softening
on the criteria of localization is investigated. The similar influence of spatial covariance
effects (which arise from the difference between the Lie derivative and the material derivative
of the Kirchhoff stress tensor) is also examined.

Numerical estimations of the main effects and their comparison with available exper­
imental results are presented in Section 5.

It has been found that the predicted by theory critical value of the strain hardening
rate herit as well as the misalignment ofthe shear bands are in accord with recent experimental
observations [ef Chang and Asaro (1981) for AI-Cu single crystals and Spitzig (1981) for
Fe-Ti-Mn single crystals].

Section 6 is focused on a discussion of the results obtained. The possibility ofdeviations
from the Schmid rule of the critical resolved shear stress implied by thermomechanical
coupling effects has been examined. Different plastic localization modes of single crystals
have been investigated, and particular attention is focused on the description of mis­
alignment of the shear bands from the active slip systems in the crystal's matrix.

At the end of the paper final comments are summarized.
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2. EXPERIMENTAL AND PHYSICAL MOTIVATIONS

2.1. Experimental observations of localization modes
In 1981 two important papers appeared which reported on experimental investigations

of shear band localization in single crystals, namely Chang and Asaro (1981) and Spitzig
(1981).

Chang and Asaro have studied AI-2.8 wt% Cu single crystals aged to contain GP
zones, (J' and (J precipitates. Uniaxial tension tests (for specimens with a 2.5 cm gauge length
and a square cross-section of approx. 4 x 4 mm) were carried out at room temperature
(298K) and at 77 and 198K. The load--engineering strain curves for three different tests
are illustrated in Fig. I. In this figure, the numbered photos correspond to the indicated
points on the load-nominal strain trajectories. Just after maximum load most of the
investigated crystals underwent diffuse necking. As indicated by photograph II in Fig. I,
for crystal 43, macroscopic shear bands soon developed within the diffusely necked region.
The onset of macroscopic, shear band localization corresponds to the attainment of a
critically low value of the ratio of slip plane strain hardening rate, h, to current tensile stress
(J, i.e. (hj(J)crit. Figure 2 shows some data obtained for the ratio (hj(J)crit. The bands were
not aligned with active slip systems in the crystal's matrix but were misaligned by several
degrees. Figure 3 shows how the material planes of the macroscopic shear bands were
inclined by a small angle to adjacent slip traces. The amount of rotation was estimated by
Chang and Asaro (1981) to be 4-5°. The idea is to rotate the slip plane in the band toward
the material plane of the band.

In Fig. 4 the macroscopic shearing in (J strengthened crystals is shown. After necking
(and maximum load) macroscopic localized shear sets in at nearly 45° to the tensile axis
on the material plane of maximum stress. In all cases fractures took place within the
macroscopically localized bands (cf Fig. 4). The fractures were ductile and involved void
and crack initiation where shear bands intersected the free surfaces and crack growth along
the bands.

It is noteworthy that Chang and Asaro (1981) found no indications of strain softening
at the initiation ofcoarse slip bands or macroscopic shear bands, or even in fully developed
macroscopic shear bands.

Spitzig (1981) performed uniaxial tension tests of nitrogenated Fe-Q.19 Ti-Q.39 Mn
single crystals (for sheet tension specimens with a gauge length of about 1.5 cm and a cross­
section of about 2.5 x 0.9 mm) at temperatures between 77 and 473K. He has observed that
after necking begins, macroscopic localized shear bands form, with subsequent deformation
occurring by localized shearing within a shear band under a decreasing load. Final sep­
aration occurred by a ductile rupture mechanism along the shear band (cf Fig. 5). The
onset of the localized shear bands was estimated for the ratio of the strain-hardening rate
to current tensile stress (hj(J)crit to be between 0.03 and 0.06. Analysis of the localized shear
bands in Fig. 6 indicates that the angle between the primary slip traces and the localized
shear bands is about 5°.

2.2. Heuristic considerations
From the analysis of the experimental investigations of localized shearing in single

crystals performed by Chang and Asaro (1981) and Spitzig (1981) we can follow the events
in the order in which things naturally happen within a gauge length of the specimen during
the uniaxial test.

In the first stage of the process a crystal specimen undergoes uniform extension in
single slip. At the point when the load--engineering strain trajectory reaches its maximum,
i.e. when the criterion for the onset of the localization by necking mode is satisfied [this is
illustrated in Fig. 7(a)], a crystal specimen exhibits slight amounts of very diffuse necking.
The neck is usually symmetric in shape indicating that double slip is operative within it. At
this stage of the tensile process the gross plastic deformations are localized to the diffusely
necked region. So, at this stage of the process the thermomechanical coupling effects begin
to playa crucial role. That is why in this region of the specimen the tensile process has to
be considered as adiabatic.
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With continued extension macroscopic, adiabatic shear bands have soon developed
within the diffusely necked region. In Fig. 7 this point on the load~engineering strain
trajectory is marked by (b). This point (b) on the shear stress-shear strain trajectory (c(
Fig. 7) is found experimentally to lie on the increasing part of this curve very near to the
maximum point, so that a critical value of the strain-hardening rate her II = (dY/d:')'hl is small
but positive.

It has been experimentally observed that at the inception of the macroscopic, adiabatic
shear band [c( Fig. 7(b)] the direction of the band is slightly different from the detected
coarse slip bands or slip traces. In other words the macroscopic shear bands are not aligned
with the active slip systems in the crystal's matrix but are misaligned by angle ()h [c( Fig.
7(b)].

While the tensile process is going on and is reaching point (c) on the load-nominal
strain trajectory the shear band localization is developing further and the misalignment is
increasing, such that <5e > <5 b (ef Fig. 7).

To describe the main experimentally observed facts connected with the macroscopic
shear band localization of single crystals, namely that the strain-hardening rate henL at the
inception of shear band localization is positive and the direction of the localized shear band
is misaligned by some small angle <5 from the active slip system, we intend to consider
the synergetic effects resulting from taking into account spatial covariance effects and
thermomechanical couplings. t

This idea is justified by previous heuristic considerations as well as by the suggestion
we can draw from experimental observations that the detected misalignment of the shear
band direction from the active slip system is directly related to local deformation and
rotation of the crystal lattice [(f Chang and Asaro (1980, 1981)].

Asaro and Rice (1977) have made efforts to accomplish the same aim by introducing the
possibility of deviation from the Schmid rule of a critical resolved shear stress. They have
proved that the first experimentally observed fact that the strain-hardening rate hent at the
inception of shear band localization is positive can be described by incorporating the non­
Schmid effects into the constitutive properties of the crystal.

The main objective of the present paper is to show that both previously mentioned
facts can be described by incorporating synergetic effects resulting from the simultaneous
consideration of spatial covariance effects and thermomechanical couplings.

3. CONSTITUTIVE STRUCTURE FOR CRYSTALS

3.1. Kinematics of finite deformations and fundamental definitions
In a neighbourhood ofX. i.e.. r(X) for every X E!J we consider the local multiplicative

decomposition of the deformation gradient [e{ Lee (1969)]

(I)

where (Fe) - ) is the deformation gradient that releases elastically the stress on the neighbour­
hood A'(X) in the current configuration of the crystal.

It is understood that Fe is the lattice contribution to F, and is associated with stretching
and rotation of the lattice, FP describes the deformation solely due to plastic shearing on
crystallographic slip systems.

A particular slip system rJ. is specified by the slip vectors sb», mb"), where Sb"1 gives the
slip direction and mb') is the slip plane normal. The vectors s\)l and mb') in the undeformed
lattice are taken to be orthonormal. As the crystal deforms the vectors sial and mix) are

t Spatial covariance effects are generated by the difference between the Lie derivative and the material
derivative of vectors and tensors involved in the description.
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Fig. 1. Load versus engineering strain curves for various ageing treatments. Numbered photos
correspond to the indicated points on the load-strain band [after Chang and Asaro (1981)].
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Fig. 3. COilrse slip bands (CSB) and macroscopic shear bands (MSB) in (a) GPII tested at 77K
and (b) a 8' strengthened crystal tested at 298K. Note the orientation difference between CSBs and
MSBs in (a), CBSs are closely aligned with the active slip systems [after Chang and Asaro (1981 )].

Fig. 4. Macroscopic shearing in 0 strengthened crystals. After necking (and load maximum) macro­
scopic localized shear sets in at nearly 45° to the tensile axis on the material plane of maximum

shear [after Chang and Asaro (1981)].

Fig. 5. Propagation oflocalizaed shear in nitrogenated Fe-Ti-Mn crystal oforientation D deformed
at 295K, 40% decrease in load from maximum load [after Spitzig (1981)).
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Fig. 6. Slip traces and localized shear on the surface of nitrogenated Fe-Ti-Mn crystal oforientation
D deformed at 295K: (a) initial deformation until necking began, (b) subsequent deformation
after removal of neck and localized shear bands from initial defOrIDation, (c) slip traces within

localized shear band in (b) [after Spitzig (1981)].
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stretched and rotated according to Fe. In the deformed lattice we have

(2)

Let us define the Eulerian velocity gradient 1= ((lv!(lx) in the current state of the crystal
by

I = F' F I = Fe . Fe I +F" . FP . FP I. FC I

and postulate for the plastic part

IP = F' F 1 - FC . Fe I = Fe. FP . FP I. FC I L sl')m1')');(X).

,x = 1

where iX' is the rate of shearing on slip system CI..

Then instead of (3) we can wri te

(3)

(4)

(5)

where d is the symmetric rate of the stretching tensor and w is the anti-symmetric spin rate.
The elastic rates of stretching and spin dC and w C are the symmetric and anti-symmetric
parts of Fe. FC

I, respectively. The plastic parts of the rate of stretching and spin are
determined by the relations:

where

n

dP = >' _;I>IN1')
'-' I ,

"ol.....:...l

wP = L jlx1W1,).

"J= I

(6)

On the other hand if e and ee are the Eulerian strain tensors then by definition we can
specify the plastic strain tensor eP as

eP = e-eC
• (8)

Introducing the Lie derivative of a spatial tensor field with respect to the velocity field
v. denoted by Lvt. we can define the rates of deformation as follows:

(9)

We have again

(10)

Let r denote the Kirchhoff stress tensor. and take the rate of stress working per unit
reference volume

r:d = r:dc+r:dP = r:dc+ L r1X)yl>l,

'.'l= 1

where

is the Schmid resolved shear stress on the slip system Ct..

(II)

(12)

t For precise definition of the Lie derivative and its geometrical interpretation please consult Abraham l!( al.
(19g8). Application of the Lie derivative to continuum mechanics may be found in Marsden and Hughes (1983)
and Simo (1988).
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The Lie derivative of the contravariant representation of the Kirchhoff stress tensor 't'
givesj

arab Orab OVa OVb

(L )ab + c cb acy't' = --;- ~V -r ~-r ~.ut ux . ux ux
(13)

It is important to stress that any possible objective rate of the stress tensor is a particular
case of the Lie derivative [cf Marsden and Hughes (1983)].

The Zaremba-Jaumann stress rate or the co-rotated derivative of the Kirchhoff stress
tensor't' is related to the Lie derivative given by (13) as follows:

(14)

It is noteworthy that there are two levels of objectivity for the constitutive structure:
(i) Frame invariance. The constitutive structure should be invariant with respect to

superposed rigid body motion [cf Truesdell and Noll (1965)].
(ii) Spatial covariance. The constitutive structure should be invariant with respect to

diffeomorphism [cf Marsden and Hughes (1983)].
In further considerations we shall take advantage of both notions of objectivity.

3.2. Constitutive postulates
For rate independent behaviour of single crystals the constitutive assumptions have

been introduced by Schmid (1924).
The Schmid resolved shear stress (12) determines the slip behaviour as follows. When

r(') reaches a critical value r~'), i.e.

r(') = r~'), Ct. = 1, ... , n, (15)

slip initiates on system Ct..

Similarly as have been assumed by Pierce et al. (1982) to deal with the possibility that
slip may be either forward to backward according to whether r(') is positive or negative,
(s('), me,») and (-s('), me,») are considered as separate slip systems on each of which only
positive slip is allowed.

After initial yield, slip continues on system Ct. if the resolved shear stress r(') on that
system keeps pace with the flow stress.

The work hardening-softening law is postulated in the form

(16)

where

then r~') do not play the role of the internal state variables.
For an active system f3 we have

rep) = r~)(y, 9), yep) > 0,

while for an inactive system

(17)

(18)

:j: It is noteworthy that (13) defines the Oldroyd rate of the Kirchhoff stress tensor 't" lef Oldroyd (1950)].
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(19)

3.3. Thermodynamic restrictions
Consider the balance principles as follows:
(i) Conservation o( mass. Denote by p(x. t) the mass denisty (in spatial coordinates).

A function p(x. t) is said to obey conservation of mass if

or

{J+pdivv = 0

p(x, t)J(X, t) = PRef(X),

(20)

(21)

where J(X, t) denotes the Jacobian.
(ii) Balance of momentum. Assume that conservation of mass and balance of momen­

tum hold. If there is no external body force field, then

pv = div(J. (22)

where (J = J- It is the Cauchy stress tensor.
(iii) Balance of moment of momentum. Let conservation of mass and balance of

momentum hold. Then balance of moment of momentum holds if and only if t is symmetric.
(iv) Balance ofenergy. Assume the following balance principles hold: conservation of

mass, balance of momentum, balance of moment of momentum and balance of energy. If
there is no external heat supply then

. . P
p(ljJ+9~+'1.9)+divq = ---t:d,

PRof
(23)

where 'I denotes the specific (per unit mass) entropy, ljJ the free energy and q is the heat
vector field.

(v) Entropy production inequality. Assume conservation of mass, balance of momen­
tum, moment of momentum, energy and the entropy production inequality hold. Then the
reduced dissipation inequality is satisfied:

I ., 1
-- t: d - ('1,9 + ljJ) -- q' grad.9 ~ O.

PRof p,9
(24)

Now we introduce the two fundamental postulates:
(i) Existence of the free energy fimction. It is assumed that the free energy function is

given by

(25)

(ii) The axiom of entropy production. For any regular motion of crystal (denoted by
~) the constitutive functions are assumed to satisfy the reduced dissipation inequality (24).

Then the constitutive assumption (25) and the evolution equation for yl") [cf eqn (18)]

(26)

where

(27)

together with the reduced dissipation inequality (24) lead to the results as follows:
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ol/l ol/l
-r = PRef oe' '1 = - 09'

where

no';;
8'" - _ ,,_'1'_ '(a)

I - /::'1 oy(a) Y

denotes the rate of the internal dissipation.
Introducing the denotation

we have

The coefficient Xis determined from the equation
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(28)

(29)

(30)

(31 )

(32)

3.4. Rate type constitutive relation
This consideration follows the formulation of the rate type constitutive relation

presented by Hill and Rice (1972, 1973) [cf also Perzyna (1990)].
The basic assumption is that the response of the materials of single crystals is always

of Green type, i.e. that the free energy function exists and is given in the form (25).
Let us assume that the thermodynamic restrictions give the results presented in the

form (28). We say that a set of the internal state variables y(a) (IX = 1, ... , n), together with
the evolution equations (26) and the initial values for y(a), describes the prior history of
inelastic deformation of the single crystal.

Let us consider purely elastic deformation-temperature process. For such a process
let us operate on the stress relation (28 1) with the Lie derivative. The result of this operation
is as follows

el

where

(Lv -r) = .I£e. de - Oz3,

el

(Lv -r)ab = tab - -rac(d~c +(J)~c)gdb - rCb(d~c +(J)~c)g"d,

(33)

(34)

and () denotes the thermal expansion coefficient.
On the other hand for general deformation-temperature process (when the internal

state variables y(a), IX = 1, ... , n vary) we have
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(L,T)"h = f"" - r'" (dd<, +UJd,.)gdh - r<h(dd<, +UJdJg"d.

Introducing the denotation

(35)

(36)

we finally have the resulting constitutive law of the rate type in the formt

n

L,T = !.r·d~ L ['pC·NI>'+bl>']r;I"-l:Jz9.
1."=--1

(37)

The result obtained in the form (37) has a similar shape to the rate equation formulated
by Hill and Rice (1972) [cf also the recent paper by Perzyna (1991)]. The main difference
is in the definition of the Kirchhoff stress rate and of course in the additional thermal
expansion term. Hill and Rice (1972) used the Zaremba-Jaumann rate, while in the present
paper [as well as in Perzyna (1990)] the Lie derivative of the Kirchhoff stress tensor has
been used. That is why the term proportional to bl "). which represents the stiffening of the
lattice due to microscopic phenomena associated with continued slipping depends in our
case on the rate of plastic spin as well as on the rate of plastic deformation, while in the
Hill and Rice paper (1972) a similar term proportional to

(3S)

depends on the rate of plastic spin only.

3.5. Thennomechanical couplingst
Substituting t{J into the energy balance equation (23) and taking advantage of the

results (28) gives

Operating on the entropy relation (28 2) with the Lie derivative and substituting the
result together with the Fourier constitutive law for the heat vector field

q = -k grad if, (40)

where k is the conductivity coefficient, into (39) we obtain the heat conduction equation in
the following form:

where

(42)

denotes the specific heat.
In view of (31) the term

x L r1x'}i l"

:X= I

t By performing a Legendre transformation it is possible to obtain the inverse form of the rate type
constitutive relation (37).

t It is noteworthy that in the description of thermomechanical couplings (Section 3.5) and the adiabatic
process (Section 3.6) for a single crystal we take advantage of a similar procedure as has been developed for
polycrystalline elastic-plastic solids by Duszek and Perzyna (1991) [ef. also Perzyna (1990)].
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on the right-hand side of eqn (41) represents the internal heating generated by the rate of
internal dissipation. This term describes the main contribution to the thermomechanical
coupling phenomena.

Beside this main term there appears two additional terms responsible for the cross
coupling effects, namely the term proportional to

0"
09: d

caused by the dependence of the stress tensor on temperature, and the term proportional
to

implied by the dependence of the generalized forces conjugate to the internal state variables
y(.) on temperature.

The first of these two additional terms does not have a dissipative character, while the
second is very dissipative in its nature.

3.6. Adiabatic process
The thermodynamic process is assumed to be adiabatic, i.e.

q =0. (43)

Then the term div (k grad 8) in the heat conduction equation (41) vanishes.
The second and fourth terms on the right-hand side of eqn (41) (which represent the

cross coupling effects) influence the evolution of temperature through the second order
terms when compared with the internal dissipation term. Their contribution to internal
heating during the adiabatic process considered is small. This suggests that these two terms
can be neglected in some considerations like the adiabatic shear band formation in the
single crystal.

So, it is reasonable to consider the evolution equation for temperature in the form

n

pCp9 = X L 'f(·)Y(·),
.= I

where the coefficient X is determined by eqn (32).

(44)

4. MACROSCOPIC SHEAR BAND FORMATION

4.1. Adiabatic process for single slip
Let us consider only single slip for the adiabatic process. Then we have [cf eqn (IS)]

(45)

Differentiation of eqn (45) with respect to time givest
t For single slip in the adiabatic process by using the evolution equation for temperature

" X .;,=-11'
PCp

we can write the rate equation (46) as follows:

. I.
l' = hadiabalK: 1.

where

~iabolK: = h+X-.!-(01c
) = h+h 1bormaJ•

pCp 09

SAS 30: I-F
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I .
,,) = h i+n,9, (46)

where the notations [cf eqn (27))

are introduced.
For single slip we can write

(47)

(48)

d

Operating on (48) with the Lie derivative (L,), i.e. taking the rate of change seen by
an observer who stretches and rotates with the crystal lattice, we obtain

and

From (49) we have

d .::1 el

i = (£:~)"hshma+'l;ah(I,s)pm,,+'l;"bsb(i,D.i.)a
d d cJ

= (L,m)" L~Sb+111,,{I,")~Sb +m,,'l;~{I--:S)h.

d

i (£;..): N+2.. • (N+ W) 'g'de

d

i = 111,,(L;..)/,sp.

(49)

(50)

(51)

It is noteworthy that the relation (51) has a very simple form. It can be compared with
the result (50) of Hill and Rice (1972) and with eqn (2.16 3) in Asaro and Rice (1977).

Substituting the rate relation for the elastic range (33) into (50) we have

i = [:e":N+bj:(d-dP )-Oz:N9.

Replacing i in (46) by (52) yields:

(52)

(53)

Let us take advantage of the rate equation for the Kirchhoff stress tensor (46), the
evolution equation for temperature (44) and the plastic strain rate (6) for single slip, i.e.

L, 't' = :ec
: d- Oz.9 - (:ec

: N + bhi,

pCpS = XLIi,

dP = N)'.

Using (54 3) in (53) gives

(54)
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. Q*:d
Y= ,

h-IT't':N+(Q*+e~'t':N):N

with the denotations as follows:

Q* = fRe :N+b,

X()
e=-fl.,

pCp

X X ateIT=-hn= ---.
pCp pCp 08

77

(55)

(56)

Eliminating yand:). from (54d and (55) we obtain the fundamental rate equation for
the Kirchhoff stress tensor't' in the following form :

where

L.'t' = IL: d, (57)

(58)

It is noteworthy that the second order tensor Q* is responsible for the elastic-plastic
properties of the crystal while the scalar coefficients e and IT describe the thermal expansion
and thermal plastic softening effects, respectively, and fl. denotes the elastic shear modulus.

If the Zaremba-Jaumann rate instead of the Lie derivative is used then we arrive at
the rate equation

i = IL *: d,

where

and

Q* =fRe:N+p.

Assuming an isothermal process, i.e.

8 = const.,

then the fundamental rate equation (59) reduces to

V
't' = IL 0

: d,

where

(59)

(60)

(61)

(62)

(63)
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IL U = [I£C - -~~-J.
h+Q* :N

(64)

The results (63}-(64) are the same as have been obtained by Asaro and Rice (1977) [tf
eqn (2.24) in their paper] provided their tensor IX, caused by non-Schmid effects, is neglected.

It is important to point out here that the Lie derivative description of the thermo­
mechanical properties of the single crystal, in the form of the rate type equation for the
Kirchhoff stress tensor or (57) with the fundamental matrix given by (58) is invariant
with respect to diffeomorphism while the Zaremba-Jaumann rate description (59)--(60). is
invariant with respect to superposed rigid body motion.

In other words the formulation (57)-(58) furnishes the single crystal considered with
the spatial covariance constitutive structure while (59)-(60) leads to frame invariance
objectivity.

4.2. Shear band localization criteria
Let us introduce the Cartesian coordinate system {x'} in such a way that the coor­

dinates Xb X2' X3 are aligned with unit vectors of the crystal slip system s, m, z, respectively.
To investigate the criteria for the adiabatic shear band localization we have to consider

the conditions as follows:

(i) the kinematic restriction:

(65)

where ~ denotes the jump of the function in brackets, i.e. it defines the difference between
the velocity gradient inside the band from that outside and 0 is a unit normal to a thin
planar band while the magnitude of jump k is a function of distance across the band (0' x)
only, and is zero outside;

(ii) the equilibrium requirement that the traction rate be continuous across the band.
I.e.

O' ~(o-) = o. (66)

For the assumption that the reference state coincides, instantaneously, with the current
state we have:

(Lv or)i; = iii - r ik (drk + Wrk)gr; - rkj (drk + Wrk)gri

= 0-'1 +r i
I dk1li - r,k (drk +Wrk )gr; - rkj (drk +Wrk )gl'l . (67)

Taking advantage of the constitutive rate equation (57) and assuming that the consti­
tutive response remains continuous at the inception of localization [ef Rice (1977) and
Rudnicki and Rice (1975)], then eqns (65)-(67) yield:

(68)

where

(69)

Substituting IL from (58) into the fundamental condition (68) we obtain
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(70)

We shall follow here the procedure developed by Rice (1977) and Asaro and Rice (1977).
It is assumed that the inverse matrix (n' .;eo. n) - I exists. Multiplying the last result by

(n . .;ee, n) - 1 we have, in abstract notation,

Since the term (0' .;ee, 0)-1. A is of the order of magnitude (t/.;eO) so it differs from
the unit tensor only by o(r/.;ee)-terms. Thus, we may assume that the tensor
[I + (o,.;ee. 0) - 1'A] has an inverse and to calculate it to any desired degree of accuracy by
the series, we obtain

(72)

When the previous result (71) is multiplied by this inverse, we have an expression in
the form

[
1- ~C ] 'k = 0,

h+Q*:N+(0Z~N -II)1::N

where

: = [I+(o,.;ee '0) I. AI- I • (n·.;ee '0)-1 -[0' ( Q*+0~1::N)J
C= Q*·o.

Upon multiplying eqn (73) by C, we obtain

[
1- c' : ] (C' k) = O.

h+Q*:N+(0Z~N -IT}r:N

(73)

(74)

(75)

In view of the fact that the term C•k cannot vanish for non-zero k unless the bifurcation
mode k involves no plastic strain, the only relevant condition for non-zero k is
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(
z'N )

h + Q*:N+ 0~ -11 't':N = '"~. (76)

This condition gives the critical h at macroscopic shear band localization as

(
z:N )

h = '"~-Q*:N- 0-/1 - 11 't':N. (77)

Substituting (56 1) and (69) into (74) and then (74) into (77) and estimating each term
in this expression and neglecting terms of the order of magnitude (r 2/1l 2

) and (r 2/1l 2)0 in
comparison to 1, we obtain

(78)

where

r
hI (0) = Ilr-0--z: [N -o(O"!l'e "0) 1" (O'!l'e: N)],

11

hz(o) = 2[(0 "!l'e "0) - I "(0' b)] "(0 "!l'e : N)

- [(O"!l'c" 0)-1" Ar 1" (0 "!l'c "0)-1. (O"!l'e: N)" (O"!l'e :N)-b: N. (79)

It is noteworthy to add that

o(:~) = o{max [(Il~} (0~)]},

o(~) = 0(:). (80)

The function ho describes the influence of the elastic-plastic properties of the crystal,
h I represents the thermomechanical coupling effects (namely thermal plastic softening and
thermal expansion) and h 2 encompasses the influence of the spatial covariance terms.

Let us consider the case 0 = m. Then we have

ho(m) = 0,

h1(m)=Ilr,

hz(m) = N:b-s"A's = O. (81 )

Thus, we have a very important result. When the plane of localization is either the slip
plane, 0 = m, or the kink plane, 0 = s, it has been found that the critical plastic hardening
modulus at the inception of localization is as follows:

(82)

To investigate the influence of the terms of the order of magnitude r, Ilr and 0r in
eqn (78) we shall expand h in a series in 0, about 0 = m (or 0 = s). In other words we shall
apply the perturbation procedure about the slip (or kink)-plane orientation developed by
Asaro and Rice (1977).

For the perturbation about 0 = m we assume
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n = m+e,

where e is understood to be small.
Expanding the expressions (79) in a series we find

r
h1(n) = fIr+8-z: ,AI'e+O(l1rln-mI 2

, 8rln-mI 2
),

f.l

h2(n) = 2s·b·e-2m·'t"·e+O(rln-mI 2
),

where

vIt = I£" - (I£" . m) . (m . I£" . m) - I • (m . I£"),

,AI= s1-m(m' I£" 'm)-l . (m' I£" ·m).

81

(83)

(84)

(85)

Since we do not know in advance the order of magnitude of e, l1e and 8e in comparison
to r/I£", we cannot be sure that the neglected terms in ho, hI and h2 are of the same order
of magnitude.

Next, substituting n - m for e and combining (84) the expression (78) for the value of
h at the localization on a plane having normal n may now be written in the form

r
h(n) = -(n-m)' (s' vIt·s)· (n-m)+l1r+8-z:,AI' (n-m)

f.l

+2rs' (n-m) + O(2'"ln-mI 3
, I1rln-mI 2

, 8 .. ln-mI 2
, .. In-mI 2

). (86)

Taking advantage of the discussion presented by Asaro and Rice (1977) which indicates
that the inverse (s' vIt· s) - I exists, the orientation n which maximizes the right-hand side
of (86) is as follows:

(87)

where the terms of higher order of magnitude than ../2'" and 8(r/2'") are neglected.
Substituting n given by (87) into (86) yields the critical hardening rate at the onset of

localization:

(88)

where again the terms of higher order of magnitude are neglected.
To obtain the direct analytical results we shall introduce the following simplifications:

(i) Let us assume [ef Duszek and Perzyna (1991)]

z = s·(s·I£"). (89)

(ii) Let us restrict our considerations to the linear, isotropic and homogeneous elastic
properties of the crystal, i.e.

(90)

where the constants J.L and .Ie are the Lame moduli.
Taking advantage of the simplification (89) we obtain
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o
0= m+1r-s+t(soJios)-1 os,

J1.
(91 )

and

hcrit = llt+h{~ (soJios)+2g1(So JioS)-1 ° [~ (So Jios)+2g1 (92)

Finally, introducing the simplification (90) we have

and

1 t (t2
)o = m+ - - (20v + l)s+0 - ,

4v J1. J1.

(~\ = ll+ ~(02V+0+~)+O(t2),tlont J1. 4v J1.

(93)

(94)

where

The results (93) and (94) are of sufficiently simple form to be used in qualitative
analysis as well as in numerical estimations of the influence o(the effects considered in shear
band localization criteria.

A similar calculation can be carried out for the case in which the perturbation about
the kink-plane 0 = s is used. Then we write

0= s+s.

The direction of the shear band at the inception of localization is as follows:

I t (t2
)0=s+--(20v+l)m+O -

4v J1. J1.

(95)

(96)

and the critical hardening rate is given by eqn (94).
It is noteworthy that the perturbation procedure used satisfies the requirement that 0,

like m, is a unit vector [cf. Asaro and Rice (1977)].
Indeed, since m ° s = 0 we have

11011 = [(m+s) ° (m+s)]1/2 = (mom+2mos+sos)I/2

= (1 + Ils11 2
) 1/2 ~ 1.

5. NUMERICAL ESTIMATIONS AND COMPARISON WITH EXPERIMENTAL RESULTS

(97)

5.1. Numerical estimations
In order to make numerical estimations of the results obtained let us write the final

form for the strain-hardening modulus rate (94) as follows:

(~\ = ll+(~\ (V02+0+~)tlont J1.lont 4v
(98)
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I tcrlt

~WTs

o.~Im~...._t_~_l:....l~;;:..rIt_s_
Fig. 8. Theoretical approximation of the misalignment of the direction of the macroscopic shear

band n from active slip systems in the crystal's matrix.

and approximate (93) by (cf Fig. 8)
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(99)

The numerical computations are obtained for AI-Cu single crystals and for nitro­
genated Fe-Ti-Mn single crystals. Some particular material parameters are taken from
Chang and Asaro's (1981) and Spitzig's (1981) experimental data. All other parameters are
as given in Table 1.

(i) Aluminum-copper single crystals tested at 298K. The following parameters have
been taken from Chang and Asaro's (1981) experimental data:

Equation (98) gives

(~\. = 0.0235+0.0004+0.0018+0.0025 = 0.0282.
orlon!

Equation (99) yields

0= m+(0.0009+0.0025)s,

and

(ii) Aluminum-copper single crystals tested at 77K. Again from Chang and Asaro's
(1981) experimental data we have

Table I. Material parameters

Parameter Unit Aluminium Iron

p Density Kgm- 3 2702 7850
cp Specific heat J Kg-' K-' 896 465
Jl Shear modulus GPa 26.0 82.0
E Young's modulus GPa 71.0 210.0
K Bulk modulus GPa 73.2 170.0
(} Coefficient of thermal K- ' 23.8 x 10-" 12.1 X 10-"

expansion
1 0.85-0.95
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(~tt = 0.0314+0.0007+0.0036+0.0050 = 0.0407.

n = m+(0.0018+0.0050)s,

tan b" = 0.0068 = b" ::::: 23'.

(iii) Nitrogenated Fe~Ti-Mn single crystals tested at 295K. From Spitzig's (1981)
experimental data:

(or) = 0.855 x10- 2, rent = 701.10 x10 6 Pa.
J.I. ent

then

(/1\ = 0.0390+0.005+0.0022+0.0030 = 0.0447Tlflt
or

hcrit = 31.34 MPa,

while

n = m + (0.00 II + 0.0030)s,

and

tanb" = 0.0041 ==;ob" ::::: 15'.

5.2. Comparison with experimental results
Let us first make a comparison between the theoretical predictions for (hlr)cnt for

aluminum--eopper single crystals and the experimental results obtained by Chang and Asaro
(1981). The critical ratio (hiT: )erit versus the angle between the tensile axis and 112 for various
ageing treatments obtained by Chang and Asaro (1981) is plotted in Fig. 2. It seems that
the comparison of the theoretical predictions estimated in Section 5.1 with the Chang and
Asaro experimental results is extremely good.

A similar conclusion can be drawn from the comparison of Spitzig's (1981) exper­
imental results for nitrogenated Fe-Ti-Mn crystals with the theoretical predictions obtained
in Section 5.1.

Spitzig's experimental data are as follows:

(hlrLrit = 0.03 --;- 0.06 or hent = 25 --;- 45 MPa,

while the theoretical results read:

(hlr)crit = 0.0447 or herit = 31.34 MPa.

To compare the theoretical predictions for the misalignment of the direction of the
macroscopic shear band from the active slip systems in the crystal's matrix we first take
into account that the theoretical estimations concerned the angle bh , i.e. at the inception
of the shear band localization, while the experimental observations of the misalignment
performed by Chang and Asaro (1981) for aluminum--eopper single crystals and by Spitzig
(1981) for nitrogenated Fe-Ti-Mn crystals have been detected at the end of the process
considered, i.e. at the point (c) as has been explained in Fig. 7.
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This interpretation of the experimental observations helps us to draw the conclusion
that the description of the misalignment by incorporating the synergetic effects resulting
from simultaneous consideration of the spacial covariance effects and thermomechanical
couplings (as has been estimated in Section 5.1) is realistic and looks promising.

6. DISCUSSION OF THE RESULTS

6.1. Thermal effects
There are two thermal effects which influence the criteria for adiabatic shear band

localization, namely thermal expansion and thermal plastic softening.
Thermal expansion affects the critical hardening rate (hj')crit [cf eqn (98)], as well as

the direction of the shear band n [cf eqn (99)], while thermal plastic softening influences
only the critical hardening rate (h/L)crit.

The contribution to the critical hardening rate generated by thermal expansion is small
and consists of two terms: 2(,j/l)critv02 and 2(,j/l)crit0. The first term is five times smaller
than the second which has a synergetic nature. The second term represents the cooperative
phenomena of thermal expansion and spatial covariance effects.

The main contribution to the critical hardening rate is implied by thermal plastic
softening represented by II. This term dominates the result and is of the order of 10- 2 while
the thermal expansion term is of the order of 10- 4.

6.2. Misalignment of the shear bands
The misalignment of the direction of the macroscopic shear bands from the active slip

systems in the crystal's matrix is affected by two phenomena, namely by thermal expansion
and spatial covariance effects.

The spatial covariance term

I
4v (,j/l)crit

has dominated influence on the direction of the shear band and is 2.5 times larger than the
thermal expansion term !0(,j/l)crit.

The theoretical results for the angle ()b at the inception of the shear band localization
have been estimated in Section 5 for aluminum-eopper single crystals tested at 298 and
17K and for nitrogenated Fe-Ti-Mn single crystals tested at 295K. It has been found that
obtained values ofthe angle ()b are small but sufficiently distinct to explain the experimentally
observed misalignment.

6.3. Spatial covariance effects
To make estimations of the influence of the spatial covariance terms on shear band

localization conditions let us assume an isothermal process, then 0 = 0 and II = 0, and
eqns (98) and (99) yield

(100)

(101)

Numerical estimations are as follows:

(i) Aluminum-eopper single crystals tested at 298K :

(~\. = 0.0025,,1on!
n = m+0.0025s, tan()b = 0.0025 => ()b ~ 9'.
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(ii) Aluminum--eopper single crystals tested at 17K:

(11) = 0.0050,
! ~:nt

n = m+0.0050s, tan6h = 0.0050 = 15h = 17.5'.

(iii) Nitrogenated Fe-Ti-Mn single crystals tested at 295K:

(h) = 0.0030 or hcn ! = 2.1 MPa,
T <.:nt

n = m+0.0030s, tan15h = 0.0030 =15h = II'.

Based on these numerical estimations we may conclude that theoretical values obtained
for the critical hardening rate (hlr)cri! are too small when compared with experimental
results. Indeed, an obtained value of (hlrLn! is of the order 10- 3, while the expected result
is of the order of 10 - :;.

However, an analysis of the theoretical results concerning the predicted direction of
the macroscopic shear bands allows us to draw the conclusion that the spatial covariance
effects playa very important role in the description of the misalignment of the shear bands
from the active slip systems in the crystal's matrix.

6.4. Non-Schmid effects
Let us consider small departures from the Schmid description as have been suggested

by Asaro and Rice (1917), i.e. in the sense that stress increment components other than
dr",s affect the shear dr', and may be important to the explanation of critical conditions for
localization.

Then the yield criterion takes the form

(102)

where oc denotes the symmetric tensor of non-Schmid effects. It is assumed that at is constant
in time and is of the order of r l':fC.

Differentiation of (102) with respect to time gives

( 103)

Replacing i by (52) and i: oc by

cl cI

i: oc = (or: oc) = (Lv)(T: oc)

d

= (Lv): OC-T: [(de +Wc
). oc+oc· (de +we

)]

el

0:::; (Lv): OC 0:::; (2"e : de) : OC (104)
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. (Q*+!t'e: IX): d
Y= .

h-Ht':N + ( Q*+ ~ 't': Nz+!t'e : IX): N
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(105)

The fundamental rate equation for the Kirchhoff stress tensor 't' finally has the form

where

IL* =

Lv't' = IL *: d, (106)

(107)

For the perturbation about n = m we obtain the orientation n which maximizes the
hardening rate in the form

and the critical hardening rate at the onset of shear band localization is as follows:

herit = II't'+~(E>~Z:";v+21'S+IX:.It'S}(s . .It'S)-1

. ( E> ~ z: ..;V+ 21's+s·.It: IX) + o (IX1', 1'/,9"e, IX 3,9"e). (109)

Taking advantage of the simplifications (89) and (90) we obtain

1 't' lr1 1
n = m+ -2 E> -S+ 4- - -S+IXzsZ+ -4 [(2v-l)lXzs + 2VIXss]S,

Jl JlV v

1 2
herit = IIl' + -4 [2E>1'v + l' + Jl(2v - 1)IXzz + 2JlVIXss] + JlIXzs •

VJl

Assuming the particular case when IXsz = IXzs = ~IX, IXzz = IXss = 0 we have

1 , 1
n = m+ 4v ~ (2E>v+ l)s+ 2IXZ,

(hJ ' ( 1) 1 Jl- =II+- E>2 V+E>+- +-IX2-.
, erit Jl 4v 4 ,

(110)

(111 )

Using the Zaremba-Jaumann rate instead of the Lie derivative and assuming an
isothermal process then eqns (105)-(111) reduce to those obtained first by Asaro and Rice
(1977).

Asaro and Rice (1977) also introduced a dislocation model for non-Schmid effects at
the onset of cross-slip in f.c.c. crystals. They estimated some of the continuum parameters
on which herit is found to depend. However, their estimations were obtained under the very
strong assumption that herit is affected only by non-Schmid effects.
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If we take into consideration the fact that hent is affected by severall"ffects, such as
thermal plastic softening, thermal expansion, spatial covariance, non-Schmid and some
synergetic interactions then final estimations for non-Schmid parameters have to be smal1er
than those obtained by Asaro and Rice (1977).

6.5. Locali:::ation modes
As has been shown by experimental investigations, in general during the uniaxial

tension test the localization by necking mode proceeds the localization by adiabatic shear
band forming mode. This fact may have very important consequences for the determination
of the shear band localization criteria.

Indeed, at the stage of the tensile process when the load---engineering strain trajectory
reaches its maximum, i.e. when the criterion for the onset of the localization by necking
mode is satisfied a crystal specimen exhibits diffuse necking. This is a very important stage
of the tensile process when the gross plastic deformations are localized to the diffusely necked
region and the state of stress is no longer homogeneous. An inhomogeneous distribution of
stress in the necked region is found to affect the adiabatic shear band localization criteria.

However, this fact has not been taken into consideration in our procedure developed
in Section 4.

The fundamental assumption of our considerations is that the boundary conditions
are such that a body sustains a uniform distribution of stress as well as temperature.

This needs further careful analysis and investigations into how the criteria for shear
band localization can be affected by a non-uniform distribution of stress within the necked
regIOn.

7. FINAL COMMENTS

The thermomechanical theory of shear band localization of single crystals presented
in this paper has been inspired by the theoretical work by Asaro and Rice (1977) and by
the experimental investigations performed by Chang and Asaro (1981) and Spitzig (1981).
These theoretical and experimental works have brought deep understanding of shear band
localization conditions for elastic~plastic single crystals in isothermal processes.

The main purpose of this paper is the investigation of shear band localization criteria
for elastic-plastic single crystals in adiabatic processes. The examination of two important
thermal effects, namely thermal expansion and thermal softening, is presented. It has been
proved that thermal expansion influences mainly the description of the misalignment of the
direction of the macroscopic shear hands from the active slip systems in the crystal's matrix,
while thermal plastic softening has dominated influence only on the critical hardening rate.

The second objective is the investigation of the influence of spatial covariance terms.
It has been found that the spatial covariance effects playa very important role in the
description of the misalignment of the shear bands from the active slip systems.

Numerical estimations have proved that by incorporating the thermomechanical effects
and spatial covariance effects in a constitutive law of elastic-plastic single crystals the
critical hardening rate hent at the inception oflocalization is small but positive. The computed
critical value of the strain hardening rate hent as well as the difference between the direction
of the macroscopic shear band and the primary slip systems of the single crystal appeared
to be in accord with the experimental results of Chang and Asaro (1981) for Al-eu single
crystals and Spitzig (1981) for Fe-Ti-Mn single crystals.

A discussion of small departure from the Schmid description [as first suggested by
Asaro' and Rice (1977)] is also presented. It has been shown that since hent is affected by
several effects such as thermal plastic softening, thermal expansion, spatial covariance, non­
Schmid and some synergetic interactions, then final estimations for non-Schmid parameters
have to be smaller than those found by Asaro and Rice (1977).

It has been noted that rate sensitivity effects need further investigations.
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